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Asymptotics of Le(a) extremal polynomials on a closed curve are investigated.
The measure a is supposed to be concentrated on a Jordan curve in the complex
plane and has masses in the exterior of the curve. The case 0 < p < W is discussed
in detail. ,,': 1993 Academic Press. Inc.

INTRODUCTION

Let F be a compact set in the complex plane, and B is a metric space of
functions, defined on F. Suppose B contains all the polynomials. The
extremal or general TchebyschefT n-polynomial is a monic nth degree
polynomial Tn with a minimal distance from zero in B:

If B is the space of continuous functions on F with the supremum norm,
then Tn is a usual TchebyschefT polynomial and m n is a TchebyschetT
constant associated with the compact F.

There are many interesting problems about extremal polynomials. The
most important ones are their asymptotic and zero distributions. Recently,
a series of results was established for the case of Lp(F, O") spaces
(I ~ p ~ 00, 0" is a Borelean measure on F). The case p = 2 is the special
case of O"-orthogonal polynomials; it has a long history of study and will
not be described here (see, for example, the classical Szego [16] and Nevai
[ 11-13] books and also the fundamental Widom paper [19]). If we are
interested in so-caIled power asymptotics of extremal constants and
polynomials, then the cases studied are the foIlowing:

(a) F=[-1, 1], dO"(x)=p(x)dx (p is a weight function), p(x) is
non-negative and integrable. For p= 00, p(x)= 1 we have the classical
TchebyschefT polynomials.
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For 1~ p ~ 00, p(x) = t(x)/ J1 - x 2 and log t(x) a Riemann integrable
function, Bernstein [1] found the power asymptotic of the extremal
constants mn.p ( p). The important generalization of this result was obtained
by Lubinsky and Saff [10]. They proved the asymptotic of mn.p(p) and
Tn,p (outside the interval [-1, 1]) under a much more general condition
on a weight function: l/p(x) E L, [ -1, 1], '1r> 1 (Nevai condition).

(b) F is a closed rectifiable Jordan curve with some condition of
smoothness.

The case 0 < p < +co was studied by Geronimus [3]. He proved power
asymptotic of mn.p ( p) and power asymptotic of Tn.p on and outside the
curve (with an additional condition that absolutely continuous part of
measure (J satisfy the Szego condition, see later). The case p = co was
investigated by Widom [19] for F = UEk , Ek being a smooth closed
Jordan curve. Recently, Li and Pan [9] studied the zero distributions of
L p( (J) extremal polynomials on the unit circle (1 < P < co ).

(c) F is a rectifiable arc in the complex plane. This case is little
understood. We do not know, for example, the power asymptotic of the
weighted Tchebyscheff constants mn,p(p) (0 < p ~ +00). The case p = 00 is
quite different from the classical real case (see [14, 18]). For F an arc on
the unit circle, p = ex, p(x) = I the Tchebyscheff polynomials were
calculated in a terms of elliptic functions by Tiran and DetaiIle [17].

In this paper we shall study the power asymptotic of mn.p«(J) and Tn.p
in the case where O<P<CIJ, F=Eu{Zl,Z2"",ZN}' E being a closed
rectifiable Jordan curve with some smoothness condition, Zk E Q := Ext(E),
measure (J is a sum (J = 0( + y, with supp 0( = E, 0(' = p(~) on E, and y is a
discrete measure having a masses A k in the points Zk' The result is the
power asymptotic

where £n(z) -+ 0 uniformly on a compact subset of Q, 1jJ* is the solution of
some extremal problem in the space H p(Q, p) (0 < p < 00). For p = 2 this
result was obtained in our previous paper [5J; here we apply the same
techniques for the general case and give a precise detials for 0 < p < I. In
the first section we present a basic definition and lemmas in the Hp(Q, p)
spaces. In the second section, we prove the main result, Theorem 2.2.

1. BASIC DEFINITIONS AND FUNCTIONAL SPACES

1.1. Conformal Mapping

Let E be a Jordan closed rectifiable curve, Q = Ext(E), G = {II' E C, 111'1> I}.
We note by II' = If>(z) the function that maps Q conformally on G in such
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a manner that lim ifJ(z)/z > 0 for z -+ 00 and ifJ( (0) = 00. Really, this limit
is equal to I/c(E), where c(E) is the logarithmic capacity of E. Let 'I' be
the inverse function to ifJ, '1': G -+ Q. The two functions ifJ(z) and '1'( w)
have a continuous extension to E and on the unit circle, respectively
(Caratheodory Theorem [4]). Their derivatives ifJ'(z) and 'P'(w) have no
zeros in Q and G and have limit values on E and on the unit circle almost
everywhere (with respect to the Lebesgue measure). So the functions ifJ'(z)
and 'P'(w) are defined and integrable on E and on the unit circle. This
gives us the possibility to define the analytic functions (ifJ'(z» lip and
('P'(W»)lip for all p: 0 < p < oc.

1.2. H p Spaces

Let A = {u E C, lui < I} be the unit disc. We start with the usual Hp(A)
space. First suppose 1~ p < 00. One function f(u) E H(A) (analytic in A) is
from Hp(A) space if

f
2"

Ilfll~ :=sup If(re ie Wd8<00(O<r<I).
p 0

(l.l )

In this case f has limit values on the unit circle (almost everywhere) and
the limit function is from the L p class. Although we have

this is the same as

f If(uW Idul ~ r f If(uW Idul.
lui ~ r lui ~ 1

Now we define Hp(G) as the space of functions f(w) with g(u) = f( l/u) E

Hp( A). Hp( G) is a Banach space. Each function f( w) from this space is
analytic in G, has limit values on the unit circle a.e. (see [15, 2, 4]), and
for 1 < R we have

For 0 < p < I, Hp(A) is not a normed space, but it is a metric space with
the distance d(f, g) = II f - gil ~p(,j) (( l.l) as definition of II * II) and it is a
complete space. Each function f(w) of Hp(G) has a decomposition
f= B(w)[h(w)]2iP, where B(w) is the Blaschke product associated with
zeros of f(w) and h(W)EH2(G) (see [15]). So the function If(wW has
limit values on the unit circle.
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1.3. Szego Function

Suppose rr a Borel measure on E with the absolutely continuous part
p(O = drr/ldel, (E E. The Szego function D(z) associated with the curve E
and the weight function p(O is the function defined by the following
properties:

(i) D(z) is analytic in Q, D(z)#O in Q, and D(oo»O

(ii) D(z) has limit values on E (a.e.) and

ID(OI- p IcP'(OI = p(o, (E E (a.e. on E).

A sufficient condition for the existence of the Szego function is the well
known Szego condition:

(1.2)

Under this condition we can get the Szego function easily: first we define
the weight function J( 11') on the unit circle by

Then IcP'(OI Id(l = de and (1.2) imply the usual Szego condition
g" log J(e ill

) de> -00.

The following function is the Szeg6 function for the domain G =
{Iwl> I}:

{
I I2

" II' + e
iO

}DG(w) = exp --2 --0 log J(e iO
) de

prr. 0 w-e'

(see [16]). Then the function D(z)=DdcP(z) is exactly the function
satisfying (i )-(ii).

104. Hp(Q,p) Spaces (O<p< +(0)

We say that a function f(z) analytic in Q is from H p(Q, p) space iff
f('P(w»/D('P(w» is a function from Hp(G). Hp(Q, p) is a Banach space
(I < P < + (0). Each function f(z) from Hp(Q, p) has limit values on E and

Ilfllfw 2.p)= t If((W p(O Idel =lim~ LR :~~;~II: IcP'(z)dzl (R-+ I),

( 1.3 )
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( 1.4 )

where l<R, ER={ZEQ:IIP(z)I=R}. For O<p<l, Hp(Q,p) as above
is a metric space with the quasi-norm (i.e., II~f II p= I~I p II f II p and
IIf + glIP~ IlflI P+ II glIP)

1 f If(zW ,
Ilfll~p(!J.p)=suPR ER ID(zW lIP (z)dzl

. 1 f If(zW ,
= lIm R f.'R ID(zW lIP (z) dzl (R ....... 1).

LEMMA 1.1. If f(z) E H/Q, p) then for every compact set K c Q there is
a constant CK such that

sup If(z)1 ~ C K Ilfll~p(.Q.p)'
K

Proof The lemma follows from the Cauchy formula for f(z)(IP'(z»I/Pj
D(z) applied on the curve E R (1 ~ p) and Minkowsky inequality. For
0< p < 1, we note that function If( 'P( It')/D( 'P( 1t'»1 p is subharmonic in G,
and if g( It') is a harmonic function with the same limit values on E R one
has g(z) ~ If( 'P(z)/D( 'P(z)W, z E K. The lemma follows from well known
property of harmonic functions (representation by Poisson kernel).

LEMMA 1.2. Let Un} be a sequence of functions from Hp(Q, p) and

(i) fn ....... f uniformly on the compact sets of Q

(ii) Ilfll~p(Q.p)~M (constant).

Then fE Hp(Q, p) and IIfli ~p(Q.PI ~ lim inf IIfnll ~p(.Q.P)·

Proof The function f(z) is analytic in Q and

~ f If(zW IIP'(z) dzl = lim ~ f Ifn(zW IP'(z) dzl ~ M
R ER ID(zW R ER ID(zW

imply thatfEHp(Q,p). Suppose M*=liminfllfnll~p(.Q.p)' then for nEA
(subset of N) and n > No we have Ilfnll ~p(Q.p) ~ M* + c. This implies

~f If(zW IcP'(z)dzl=lim~f Ifn(Z'W IIP'(z)dzl~M*+e.
R ER ID(zW R ER ID(zW

Thus II f II ~p(Q.p) ~ M* + e, Ve > O. This proof is valid for all p > O.

1.5. Extremal Problems in the Hp(Q, p) Spaces

We pose (0 < p < 00)

/l( p) := inf{ 111/>11 ~p(.Q.P)' I/> E Hp(Q, p), 1/>( 00) = 1}. (1.5)
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One can calculate the extremal function in (1.5) explicitly from the Szego
function: first we have

!- f ItP(zW t/J' z d"' -!- f ItP(lJ'(w)W w >-~
R ER ID(zW 1 () .. 1- R Iwl~R ID(IJ'(w)W Id 1=--- D(oo)P (1.6 )

because the function under the integral symbol is subharmonic in G. If
tP* = D(z)/D( 00), then in (1.6) we have equality exactly. So tP*(z) is an
extremal function for (1.5).

LEMMA 1.3. An extremal function l/J * of the problem

p*(p) :=inf{"tP"~p(Q.PI' tPeHp(Q, p), tP(co) = 1, tP(zd=O, k= 1, ..., N}

(1.7)
is given by (tP*=D(z)/D(oo»

l/J*=tP* fI t/J(z)-t/J(zd 1t/J(Zk)1
2

k~ 1 t/J(z) t/J(zd - 1 t/J(Zk)

Proof We set

(1.8 )

(1.9 )

B(z) is a bounded analytic function in Q, B( 00 ) = 1, B(z) has a continuous
extension to E, and IB(OI = n7 It/J(zdl (Blaschke product). If
tPeHp(Q, p) and tP(oo) = 1, tP(zd=O, thenf(z) = tP(z)/B(z)e Hp(Q, p) and
f( co ) = 1. From the continuity of B(z) on E one can find

which implies tl(p)~(n71t/J(zdl)-Ptl*(p). Conversely, for feHp(Q,p),
f(co)= 1 the function tP(O=f(z) B(z) is from the same space and
tP(oo)= 1, tP(zd=O. This implies tl*(p)~(n71t/J(zdlY tl(p). So

tl*(P)=(~ 1t/J(Zk)IY tl(p)

and the lemma follows.

1.6. Closed Curves of the Class r (Geronimus [3])

For a closed Jordan curve the Faber's polynomials Fn(z) are defined by
decomposition
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with A,,(z) = O(1/z) for z -+ 00. A curve E is said to be from the class r if

),"(0 -+ 0 uniformly on E.

lf z=z(t) is a parametrization of the curve E (z: [a, [J] -+E, z(a)=z([J»
then a sufficient condition for E to be in the class r is that z'(t) is in a
Lipschitz <5-c1ass for some exponent <5. In this case A,,(O = O(1ln b

') with
0< <5' < <5 [8].

2. ASYMPTOTICS OF EXTREMAL POLYNOMIALS

Let E be a closed Jordan rectifiable curve, Q:= Ext(E), z I' ... , Z N E Q.

Suppose that the measure a is a sum a =a + y with supp IX = E, da/ld(l =
p(O (absolutely continuous part of a), y being a discrete measure with the
masses A k in the points Zk' We denote as in the intr~ductionby m",p(a) the
extremal constants: (F= Eu {Zt, Z2' ..., ZN})

and by T", p(z; a) the associated extremal polynomials. First we state the
result of Geronimus [3]:

THEOREM 2.1. If 0 < p < 00, E is from the class r, p(O satisfy the Szego
condition (1.2), then

, m (a)
(i) hm ".p = (}J(p)li P

c(E)"

(ii) lim II T".p(z; a) - r/>*(Z)II = 0
c(E)" ep"(Z) HpID,p)

(iii) T",p(z; a) = c(E)" ep"(z) r/>*(z) [1 + e,,(z)], e,,(z) -+ 0 uniformly
on the compact sets of Q.

The constant }J( p) and the function r/>*(z) are defined in 1.5 of the previous
section.

More precisely, Geronimus proved that if E is from the class r, then (i),
(ii), (iii), and Szego condition (1.2) are equivalent to one another. Now we

are able to prove

THEOREM 2.2. If 0 < p < 00, E is from the class r, p(0 satisfy the Szego
condition, then for a measure a
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(ii) lim II Tn.p(z; 0') -I/J*(Z)II =0
n-x c(EtcPn(z) H pW,I')

(iii) Tn.p(z; O')=c(Et cPn(z) I/J*(z) [1 +cn(z)], cn(z)-+O uniformly
on compact subsets of Q.

The constant J1*(p) and the function I/J*(z) are defined in 1.5 of the previous
section,

We note that the form of asymptotic of mn.p(O') and Tn.p(z; 0') is the
same as in the Geronimus theorem, only the extremal constant J1*( p) and
the extremal function I/J *(z) change. The asymptotics do not depend on a
singular part of the measure 0' (the same for a) on the curve E. The
constants J1(p) and .u*(p) and the functions ¢i*(z) and I/J*(z) are given by
(1.9) and (1.8).

Proof (i) First we set ¢in(z) = Qn(z)/c(Er cPn(z) for a polynomial
Qn(z) = zn + ... , Every function of this type is in the Hp(Q, p) and
¢in( Xi) = I. Obviously, for this type of function

(2.1 )

We have

(2.2)

Suppose now that Qn(z) = Qn- N(Z)(Z - zd(z - Z2)'" (z - ZN) where
Qn_N(Z)=zn-N+ ''', then

where wN(z)=(z-zd(z-Z2)'''(Z-ZN)' The absolutely continuous part
of the measure /wN«()IP d:x(O) is /wN«()IP p(O /d(l, it satisfies the Szego
condition, and from Theorem 2.1 we get

(2.3 )

If now ¢i E H,,(Q, p) and ¢i(Xi) = 1, ¢i(zd = 0, k = 1, ... , N, then
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(it is simple for 1:::; p < 00 because in this case 111,611~pIQ.P) =
SE 11,6((W pm Id'l, for 0 < p < 1 we use the continuity property of <1>(z)
and (1.4». Thus jl*( p) ~ jl( p( IW NIPlc(E)Np » (its are equal really). So we
have from (2.3)

. m" p(a) l'hmsup , :-:::::[jl*(p»]IP
c(E)" '" .

(2.4 )

Now (2.4) implies that 11<6: II Hp(D, pl :::; M = const, 1,6: = T".p(z; a)1
c(E)" <1>"(z). Let M*:= lim inf 111,6: II ~ (0, p)' then for some subsequence
nEA, M* :=Iim 1I1,6:II~p(Q.p\' This and Lemma 1.1 imply that {1,6:, nEA}
is a normal family in Q. So we can find a function t/J(z) that is a uniform
limit (on the compact subsets of Q) of some subsequence {1,6:, n EA I} of
{1,6:, n E A }. From Lemma 1.2, we get t/J E Hp(Q, p) and

Iit/J II ~p(Q. p):::; lim inf 11<6: II ~p(Q. p)' (2.5)

But, on the other hand, it is obvious that t/J( 00 ) = 1 and (2.4) implies that

N

L Ak 1<1>(ZkW" 11,6:(ZkW:::; M = const.
k~l

That is, 1<6:(zk)1 = 0(1/1 <1>(zdl") -> 0 (I <1>(zdl > 1), we have finally
t/J(Zk) = 0, and from (2.5) we get

[jl*( p)] :::; lim inf 11<6: II ~ (Q p) :::; lim inf [m". p(a)JP.
p , c(E)"

This wi th (2.4) proves (i).

(ii) We set t/J" = !(<6: + t/J *), then t/J,,( (0) = 1 and t/J,,(zd ->0, n -> 00

(k=1,2, ... ,N). As in (i), we get liminflit/J"II~p(Q.p)~jl*(p). Now (ii)
follows from Clarkson inequality:

1:::; p:::; 2,
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2~p<oo,

t Ih¢i: + I/!*W p(O Id(1 +t d(¢i: - I/!*W p(O jd(1

~ ~ t 1¢i:IP p(O Id(j + ~ IE II/! * IP p(o Id(1
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0< p < 1. Once can use the Keldysh lemma (see [6]): If fn( u) is a
sequence of analytic in the unit disc functions,f" E H p( LJ ), fn( e'A ) is a limit
values of fn on the unit circle and f,,(O) ~ 1 plus

then limn ~x(I/2rr.) f~" Ifn(e'/I) - 11 PdO = O. We need a simple generalization
of this statement:

LEMMA 2.1. If fn( u) is a sequence of analytic functions !" E Hp( LJ ),
In(e'f)) is a limit values 01 In on the unit circle and In(O) ~ I, lAud ~ 0
(k= 1,2, ... , N ukELJ) and

Then

where

Proof First we note that Ib(eiAW=n~=11/luklP and b(O)= l. For the
functions gn(u)=fn(u)/b(u) we have Iimn~00{(1/27t) g" \gn(e'IIW dO} = 1.
On the other hand gn(u) = hn(u) + L~~I rk fn(ud/(u - ud, where
the constants rk do not depend on n. But fn(ud ~ 0, so
lim{ (l/2rr.) H" Ihn(e'Il)IP dO} = 1 and hn(O) =gn(O) - L.~= I rdn(uk)/Uk ~ l.
The functions hn are analytic in the unit disc and we can apply the KeJdysh
lemma for this sequence of functions. Thus limn ~ x {(l/2rr.) f~" Ihn(e'f))­
1\ PdO} = O. This implies limn ~ 00 H" \h,,(eill ) b(e'/i) - b(e'{)W dO = 0 and the
lemma follows from this.

We get (ii) by applying Lemma 2.1 to the sequence ¢i:(z)!¢i*(z) with
u= 1/l1>(z) (we recall that ¢i*(z)=D(z)/D(co)).

(iii) follows from (ii) and Lemma 1.1. Theorem 2.2 is proved.

The interesting question is the asymptotic of Lp(O')-extremal polynomials
in the case when E = U E" E, being a closed rectifiable Jordan curves,
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1=1,2, ...,£, and F=Eu{Zl,Z2, ... ,ZN}' We shall give a result In our
future paper (this case needs some different techniques).
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